|
|
Optimal Waveform for Fast Entrainment of Weakly Forced Nonlinear Oscillators
Anatoly Zlotnik, Yifei Chen, István Z. Kiss, Hisa-Aki Tanaka and Jr-Shin Li
Physical Review Letters, 2013.
Abstract
For many biological and engineered systems, a central function or design goal is to abbreviate the time
required to synchronize a rhythmic process to an external forcing signal. We present a theory for deriving
the input that effectively minimizes the average transient time required to entrain a phase model, which
enables a practical technique for constructing fast entrainment waveforms for general nonlinear oscillators.
This result is verified in numerical simulations using the Hodgkin-Huxley neuron model, and in experiments on
an oscillatory electrochemical system.
Download PDF
Figures at a glance
References
- S. H. Strogatz, Nonlinear Dynamics and Chaos (Perseus Books Group, Cambridge, MA, 2001), 1st ed.
- A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Science (Cambridge University Press, New York, 2001).
- T. Naqvi and D. Winter, U.S. Patent No. 8 112 150 (2012).
- J. Waterhouse, T. Reilly, G. Atkinson, and B. Edwards, Lancet 369, 1117 (2007).
- C. R. McClung, Adv. Genet. 74, 105 (2011).
- X. Feng, C. White, A. Hajimiri, and M. Roukes, Nat. Nanotechnol. 3, 342 (2008).
- H. Moehlis, E. Brown, and H. Rabitz, J. Comp. Nonlin. Dyn. 1, 358 (2006).
- I. Dasanayake and J.-S. Li, Phys. Rev. E 83, 061916 (2011).
- A. Zlotnik and J.-S. Li, in Proceedings of the 2011 ASME Dynamic Systems and Control Conference,
Arlington, VA, 2011 (ASME, New York, 2011), Vol. 1, pp. 479-484
[http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1638452].
- T. Harada, H.-A. Tanaka, M. J. Hankins, and I. Z. Kiss, Phys. Rev. Lett. 105, 088301 (2010).
- A. Zlotnik and J.-S. Li, J. Neural Eng. 9, 046015 (2012).
- A. Granada and H. Herzel, PLoS One 4, e7057 (2009).
- S. Hata, K. Arai, R. F. Gala´n, and H. Nakao, Phys. Rev. E84, 016229 (2011).
- B. Ermentrout, Neural Comput. 8, 979 (1996).
- S. H. Strogatz, Physica (Amsterdam) 143D, 1 (2000).
- F. Hoppensteadt and E. Izhikevich, Phys. Rev. Lett. 82, 2983 (1999).
- Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer, New York, 1984).
- I. Z. Kiss, Y. Zhai, and J. L. Hudson, Science 296, 1676 (2002).
- S. Nakata, K. Miyazaki, S. Izuhara, H. Yamaoka, and D. Tanaka, J. Phys. Chem. A 113, 6876 (2009).
- E. Brown, J. Moehlis, and P. Holmes, Neural Comput. 16, 673 (2004).
- D. Efimov and T. Raissi, in Proceedings of the 8th IFAC Symposium on Nonlinear Control Systems Bologna, 2010
(IFAC, Laxenberg, Austria, 2010), pp. 332-337 [http://www.ifac-papersonline.net/Detailed/43863.html].
- W. Govaerts andB. Sautois, NeuralComput. 18, 817 (2006).
- B. Ermentrout, A Guide to XPPAUT for Researchers and Students (SIAM, Philadelphia, 2002).
- I. Kornfeld, S. Fomin, and Y. Sinai, Ergodic Theory: Differentiable Dynamical Systems, Grundlehren der
Mathematischen Wissenschaften Vol. 245 (Springer-Verlag, Berlin, 1982).
- F. Hoppensteadt and E. Izhikevich, Weakly Connected Neural Networks (Springer-Verlag, New Jersey, 1997).
- A. Hodgkin and A. Huxley, J. Physiol. 117, 500 (1952) [http://www.ncbi.nlm.nih.gov/pubmed/12991237].
- O. Lev, A. Wolfberg, L.M. Pismen, and M. Sheintuch, J. Phys. Chem. 93, 1661 (1989).
- I. Z. Kiss, Y. M. Zhai, and J. L. Hudson, Phys. Rev. Lett. 94, 248301 (2005).
- D. Andrieux and P. Gaspard, J. Chem. Phys. 128, 154506 (2008).
|
|
 |