|
|
Optimal Waveform for the Entrainment of a Weakly Forced Oscillator
Takahiro Harada, Hisa-Aki Tanaka, Michael J. Hankins, and István Z. Kiss
Physical Review Letters, vol. 105, no. 8, 088301, Aug. 2010.
Abstract
A theory for obtaining a waveform for the effective entrainment of a weakly forced oscillator is
presented. Phase model analysis is combined with calculus of variation to derive a waveform with which
entrainment of an oscillator is achieved with a minimum power forcing signal. Optimal waveforms are
calculated from the phase response curve and a solution to a balancing condition. The theory is tested in
chemical entrainment experiments in which oscillations close to and farther away from a Hopf bifurcation
exhibited sinusoidal and higher harmonic nontrivial optimal waveforms, respectively.
Download PDF
Figures at a glance
References
- A. S. Pikovsky, M.G. Rosenblum, and J. Kurths, Synchronization?
A Universal Concept in Nonlinear Sciences
(Cambridge University Press, Cambridge, England, 2001).
- A. T. Winfree, The Geometry of Biological Time
(Springer-Verlag, New York, 1980).
- L. Glass, Chaos 1, 13 (1991); R.A. Gray, Chaos 12, 941
(2002).
- G. B. Ermentrout, R. F. Galan, and N. N. Urban, Phys. Rev.
Lett. 99, 248103 (2007).
- A. E. Granada and H. Herzel, PLoS ONE 4, e7057 (2009).
- N. Bagheri, J. Stelling, and F. J. Doyle, PLoS Comput.
Biol. 4, e1000104 (2008).
- D. Forger and D. Paydarfar, J. Theor. Biol. 230, 521
(2004).
- D. Lebiedz et al., Phys. Rev. Lett. 95, 108303 (2005).
- V. Gintautas and A.W. Hu¨bler, Chaos 18, 033118 (2008).
- J. Moehlis, E. Shea-Brown, and H. Rabitz, J. Comp.
Nonlin. Dyn. 1, 358 (2006).
- J. Ritt, Phys. Rev. E 68, 041915 (2003).
- J. Feng and H. C. Tuckwell, Phys. Rev. Lett. 91, 018101
(2003).
- R. E. Best, Phase-Locked Loops: Design, Simulation, and
Applications (McGraw-Hill, New York, 1997).
- A. T. Winfree, J. Theor. Biol. 16, 15 (1967).
- Y. Kuramoto, Chemical Oscillators Waves and Turbulence
(Dover, Mineola, New York, 2003).
- In this Letter we focus on the 1:1 resonant case. However,
the presented theory is also valid for general m:n resonant
cases.
- S. H. Strogatz, Nonlinear Dynamics and Chaos (Addison-
Wesley, Reading, MA, 1994), p. 105.
- There may be multiple locking ranges for f. For graphical
examples, see p. 64 of [15]. In our setting, the largest
range should be chosen for maximizing R in these situations.
- Here f are continuous and have continuous first derivatives,
which belong to a function space with the norm ||・||
defined by ||f|| = max|f(θ)| + max|f'(θ)|. For details,
see I. M. Gelfand and S.V. Fomin, Calculus of
Variations (Dover, Mineola, New York, 2000), Chap. 1.
- The existence of the generic solution to balancing condition
can be proven by partially integrating Z'(θ+π)Z(θ),
resulting in <Z'(θ+π)Z(θ)> = 0. Note that this solution
has Z2 symmetry.
- I. Z. Kiss et al., Science 316, 1886 (2007).
- I. Z. Kiss, Y. Zhai, and J. L. Hudson, Phys. Rev. Lett. 94,
248301 (2005).
- M. T. M. Koper, Adv. Chem. Phys. 92, 161 (1996).
- Up to three harmonics are considered in the PRC.
Addition of higher harmonics resulted in very minor
changes of the waveform.
- Y. Kawamura et al., Phys. Rev. Lett. 101, 024101 (2008).
|
|
 |