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Abstract 

We analyze a large system of nonlinear phase oscillators with sinusoidal nonlinearity, uniformly distributed natural frequen- 
cies and global all-to-all coupling, which is an extension of Kuramoto's model to second-order systems. For small coupling, 
the system evolves to an incoherent state with the phases of all the oscillators distributed uniformly. As the coupling is 
increased, the system exhibits a discontinuous transition to the coherently synchronized state at a pinning threshold of the 
coupling strength, or to a partially synchronized oscillation coherent state at a certain threshold below the pinning threshold. 
If the coupling is decreased from a strong coupling with all the oscillators synchronized coherently, this coherence can persist 
until the depinning threshold which is less than the pinning threshold, resulting in hysteretic synchrony depending on the 
initial configuration of the oscillators. We obtain analytically both the pinning and depinning threshold and also expalin the 
discontinuous transition at the thresholds for the underdamped case in the large system size limit. Numerical exploration 
shows the oscillatory partially coherent state bifurcates at the depinning threshold and also suggests that this state persists 
independent of the system size. The system studied here provides a simple model for collective behaviour in damped driven 
high-dimensional Hamiltonian systems which can explain the synchronous firing of certain fireflies or neural oscillators with 
frequency adaptation and may also be applicable to interconnected power systems. 

PACS: 02.50.-r; 05.40.+j; 05.90.+m; 84.30.Jc; 87.10.+e 
Keywords: Phase model; Mutual entrainment; Hysteresis; Bifurcation; Adaption 

I. Introduction 

There has been a continuing effort to understand the collective synchronous behaviour in dynamical  systems with 

many degrees of  freedom. Particularly, for the spontaneous emergence of  synchronization, extensive studies have 

been devoted to large populations of  l imit-cycle oscillators ([ 1-3,5,6,15,16,20-24,26,29-31,38],  see [27] for many 

other interesting references). The studies have been motivated by intrinsic scientific interest [4,8,9,12,13,17,36,37] 

along with the applications to engineering [7,11,13,32,33,35,39]. Recently, a breakthrough has been made in [35] 
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that relates the study of a practical current-biased series array of non-identical Josephson junctions and Kuramoto's 
theory on spontaneous synchrony which was originally a product of an ingenious and bold insight in nonlinear 
physics [15,16,24]. 

Certain interacting limit-cycle oscillators can be reduced to a phase  model  through averaging, allowing them to 
be approximated by a set of first-order phase equations of the form 

dOi 
-~- O)i -}- 2..* n j i (Oj  -- Oi), (1) 

d--~- 
J 

in order to analyze their synchrony. On the other hand, systems with many degrees of freedom of the form 

d20i 
-- Z Hji  (Oj - Oi) (2) dt 2 ) 

can be Hamiltonian, having special dynamical characteristics [ 14,19,34]. A damped, driven generalization of (1) 
and (2) 

d20i dOi 
: ~2i -1- Z aj i (Oj  - Oi) (3) m - ~  + dt 

J 

is a practical model for systems with many degrees of freedom in various fields of science. The question naturally 
arises to the behavior of (3): do the oscillators synchronize as in (1) or do they exhibit dynamical patterns which 
are a remnant of the dynamics in (2)? 

Another motivation of this work is related to the progress in modeling the synchronous firing of the southeast Asia 
fireflies - Pteroptyx  malaccae.  Unlike other species such as P.cribellata, P.malaccae has an ability to alter its firing 
frequency as much as 15% to higher or lower frequency in response to the external signals, and this adaptation is 
considered to be responsible for the synchronous firing with very small phase lags [ 12]. Based on the physiological 
reasoning as well as the data from field work by Hanson [12], Ermentrout [8] developed a phase model explaining 
the synchronous firing in swarms of P.malaccae.  His idea is to introduce an adaptive effect of the firing frequency 
to the phase model (1), as the simplest model for synchronous firing with small phase lags, in the following way: 

N 
Oi = O)i, O9i = E(O)i0 -- O)i) q- y ~  nj i (Oj  -- Oi). (4) 

j=l 

Choosing small E and a particular function Hji (which can be nearly sinusoidal if o) i is in the range of adaptive 
frequency), phase model (4) can simulate the synchrony observed in swarms of P.malaccae [8]. Interestingly, (4) is 
equivalent to (3) if (3) has an all-to-all, global coupling. More specifically, (4) can be transformed to 

N 

mOi + Oi = ,.Qi @ ( K / N )  Z h(Oj - Oi), i = 1 . . . . .  N (5) 
j = l  

by assuming that all Hji  are identical and letting 

told ~ E/new, ~f2i = EO)i ,O,  H j i ( O j  - -  O i )  = ( K / N ) h ( O j  - -  Oi) , m = E -2. (6) 

Here, we study the particular model (5) with sinusoidal nonlinearity h(.) = sin(.). In addition to the interest in 
firefly synchrony, this model may be significant for understanding the synchrony in power systems modeled by the 
swing equation [25], and also to extend the analysis of the Hamiltonian system studied by Konishi and Kaneko [ 14] 
to a damped, driven (continuous time) system. 
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Fig. 1. Hysteretic synchrony observed in (5) with system size N = 500. (a) As K exceeds the depinning threshold KD the system switches 
discontinuously from the incoherent state to the coherent locked state. The data were obtained for m ~ 0.85 and uniformly distributed 
~Qi in [ -5 .0 ,  5.0]. (b) For larger m ( ~  0.95) and the same natural frequency distribution if2 M as in (a), the system exhibits an oscillation 
of the coherency r in the shaded region. The dotted line shows a time average of r. 

In this paper, we consider the phase model (5) to understand the effect of inertia, namely frequency adaptation 
to synchrony of oscillators. The main new finding is that the system can exhibit hysteretic synchrony depending 
on the initial conditions. A schematic illustration of this phenomenon is shown in Figs. l(a) and (b). The vertical 
axis represents a degree of the synchrony of the oscillators which will be explicitly defined in Section 2. Fig. ! (a) 
shows the simplest pattem obtained numerically for m = 0.75, .('2 M = 5.0 and N = 500 where the hysteresis is 
characterized by two different sets of (K, r) values at which a discontinuous jump across between the incoherent 
state and coherent synchronized state. This kind of hysteretic synchrony has been observed in the charged density 
wave (CDW) model studied in [29]. While in Fig. 1 (b), an oscillation of the coherence r can be observed in the 
shaded region for m = 0.85 and the other conditions as in Fig. l(a), it suggests, that the synchrony in (5) has a 
more involved nature than in the CDW model [29]. The common feature observed in Figs. l(a) and (b) can be 
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summarized as follows: (i) there is an upper/lower limit of K where the coherent synchrony onsets/disappears; and 
(ii) the coherent synchronized state and the incoherent state can coexist for a certain coupling strength K between 
the upper and lower limits of K. 

This paper aims to clarify these characteristics in the limit of large N and to examine the oscillating sate of 

the coherence. The paper is organized as follows. In Section 2, to make our starting point clear, we review the 
self-consistent theory of Kuramoto's model in its simplest form. In Section 3, we develop a self-consistent theory 

for the synchrony of (5) in the limit of N --+ ~ .  The main idea is an extension of Kuramoto's theory which 

involves the self-consistent mean field theory taking different initial configurations of oscillations into account. In 

Section 3.1, we introduce an order parameter r to decouple (5) into a swarm of single pendulum oscillators and 

consider the hysteretic response of each oscillator. In Section 3.2, we start from a system with a distribution of the 
natural frequencies 12M, for which two different self-consistent equations are derived, corresponding to the two 

different initial configurations of oscillators. We then focus on one simplifying case in Section 3.3, that permits an 
analytical treatment of the self-consistent equation- that of uniformly distributed natural frequencies in a finite range 

[--S2M, S2M] and m • K >> 1. From the self-consistent equation, which is perturbatively approximated under these 

conditions, analytic results are obtained in Section 3.4, i.e. the lower and upper critical points and the associated 

discontinuous jumping between incoherent and coherent synchronized states are obtained. Specifically, the lower 
critical point is shown to be the same as that from the original Kuramoto model, while the upper critical point is 

obtained from a set of nonlinear finite-dimensional equations and shown to have a greater K than the lower critical 

point. 
In the numerical part (Section 4), we numerically simulate the model (5), and verify the existence of hysteretic 

synchrony, where the lower and upper critical points are obtained and show a nice agreement with the theoretical 

prediction in Section 3.4. In addition to the hysteretic synchrony phenomena, we examine the oscillatory state of the 
coherence r for different system size N and coupling strength K to explore the size dependence of the oscillatory 

region. 

2. Kuramoto's theory in its simplest form 

The "phase transition"-like synchronization onset is a large population of interacting oscillators and was first 

described by Winfree in [36]. An analytically tractable model, the Kuramoto model, was then proposed by Kuramoto 
to elucidate a subtle connection between collective synchronization and phase transitions [ 15,16,24]. The Kuramoto 

model, which is derived by averaging from a certain class of weakly, globally coupled limit-cycle oscillators, takes 
the following form in the simplest case: 

N 

Oi = ~)i + ( K  / N )  Z sin(0j - Oi) , 
j = l  

i = 1 . . . . .  N. (7) 

H e r e ,  0 i and ,.(2 i a r e  respectively, the instantaneous phase and the natural frequency of the ith oscillator, and K/N > 0 
is the coupling strength. In the large N limit, we assume that the intrinsic frequencies have a certain distribution 
gff2). Since (7) has the arbitrariness in shifting all Oi by S2t, we can assume the distribution g (I-2) becomes zero-mean 
after a shift. Here, we consider a unimodal, symmetric distribution g(I-2) with g(12) = g ( -12)  which includes the 
Gaussian and also the uniform distribution, although certain bimodal distributions can be considered as in [ 16]. The 
"all-to-all" global coupling in (7) might seem unrealistic at the first sight, but this global coupling arises naturally in 
certain circumstances; for example, in realistic, electrical systems such as a Josephson array [35] and the interaction 
of quasi-optical oscillators with a cavity [39]. The uniform global coupling in (7) provides a simplifying property 
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that enables one to utilize the "mean field" description of macroscopic behavior. This can be realized by use of 

"order parameters" r and 4~ defined by 

N 
re i4' = ( l / N )  ~ e i0/ (8) 

j= l  

in which r = r (t) and ~ = 4' (t) can be interpreted as the degree of synchrony and the mean phase angle, respectively. 

From a trignometric identity and (8), one can transform (7) equivalently to the following set of  equations: 

Oi = F 2 i + K r s i n ( q ~ - O i ) ,  i =  1 . . . . .  N. (9) 

In (9), each oscillator is equivalent to an overdamped pendulum with torque £2i and restoring force proportional to 

K r. Thus, the order parameters r and q~ determine the time evolution of Oi, and Oi determines r and q~ self-consistently 

by (8). Using the above formalism, Kuramoto obtained the following key insight: 
[AI] There are self-consistent steady solutions of  (8) and (9). In particular, there are solutions with r(t)  and qS(t) 

being constant, in which all fluctuations vanish in the large N limit. 

In the present situation, q~ can be set to 0 without loss of generality from the arbitrariness of Oi in (7). One "trivial" 

solution is found to be r(t)  -~ 0, where all oscillators rotate at their intrinsic frequencies. This completely incoherent 
solution exists for all K, but is not necessarily stable. A secondary family of  steady solutions bifurcates at K = Kc 
with 

2 
Kc = . ( 1 O) 

7r g(O) 

This critical value can be obtained from the self-consistent formalism which is briefly explained as follows. For 
a given g ( ~ )  and constrants K >_ Kc and r > 0, the oscillators are separated into two groups. One group is the 

mutually synchronized oscillators with I~]  < Kr (denoted by [S]), and the other group is the drifting oscillators 
with t~[  > Kr (denoted by [D]). In the synchronized group [S], each oscillator is locked to the mean phase with 
phase lags determined by (9). A drifting oscillator in [D] with a natural frequency £2 has a velocity 0 also determined 

by (9), Thus, given the natural frequency distribution g(~2), the normalized density of the oscillators in [S] and [D] 

can be, respectively, obtained explicitly as ns (0) and nD (0, ~Q) through [15,16,24]. This static density of oscillators 
on the unit circle of  0 ~ [0, 2Jr) determines the contribution to the mean phase from the oscillators in IS] and [D]. 

Namely, the contribution of the locked oscillators [S] is expressed as 

7r/2 

C~ns(O)e iO d O =  Kr  [ c o s 2 0 g ( K r s i n 0 ) d 0 ,  (11) rlock 
* J  * ]  

-7rt2 

while the contribution from the drifting oscillators [D] is expressed as 

r a , . i f t = f f e i ° n D ( O , , f 2 ) g ( S ' 2 ) d , . ( 2 d O = O .  (12) 

IS21>Kr 

This particular form of rlock appears again for (5) as shown in Section 3.2. The sum of rtock and rdrif t again determines 
the mean phase such that the following self-consistent equation must be satisfied [ 15,16,24]: 

r ---- rlock -4- rdrift. (13) 

We see in (12) that rdrif t vanishes due to the symmetry of g(I2) ,  g(£2) = g(-X2) ,  i.e. in the Kuramoto model with 
symmetric g(£2), a swarm of evenly distributed oscillators has no effect on r. However, this cancellation does not 
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hold for (5), even for a symmetric g(O),  as we see in Section 3. Thus, assuming K r  sin 0 is small in g(.) of (l 1), 
we are led to the following equation from (13): 

r = rlock q- rdrift = rlock --~ ½YrKrg(O) - l zrK3r3g(2)(O)  h- O(r4). (14) 

Dividing (14) by r and letting r ~ 0, we find Kc = 2/yrg(0) and the coherence factor r grows as (K - Kc) 1/2 
just above the transition at K = Kc. The exponent ½ is due to the pure sine nonlinearity in (7) [6], and thus shows 
the analogy to the second-order phase transition in magnetic spins. It should be mentioned that much progress has 
been made in this formalism; see for example [24] for modulated sinusoidal coupling function, and [6] for certain 
general periodic functions. 

3. Extension of  Kuramoto's  theory to a second-order system 

In this section, we develop a self-consistent theory for the coherence r in (5) (hereafter, we call (5) the extended 
Kuramoto model). The basic idea is the same as Kuramoto's, however, the analysis for the extended K ramoto 
model becomes more involved because (a) Eq. (5) is genralized from a second-order system (a pendulum equation) 
whose static states can be multi-stable and, therefore, dependent on the initial conditions, and (b) there is no longer 
an exact solution to (5) for the drifting oscillators. We start from general m, K and g(O)  with g(O) = g ( - O ) ,  and 
derive self-consistent for different configurations of initial conditions taking the above property (a) into account, 
then focus on one simplifying case of m, K and g(O)  which enables us to give a good approximation of the solution 
and the density of drifting oscillators on the unit circle. 

3.1. Governing equation and hysteretic curve o f ( O ,  (0'}) 

Utilizing the identity ( K / N )  Y~7=l sin(0j - Oi) = K r  sin(4~ - Oi) as obtained from (8) and a trigonometric 
identity, (5) can be transformed to 

mOi -~-6i --:--Oi - K r s i n O i ,  i = 1 . . . . .  N,  (15) 

which is the governing equation for a single damped driven pendulum. A damped driven pendulum is known to have 
hysteresis with respect to the initial conditions (Oi, Oi), which can be characterized by two different driving frequen- 
cies: the pinning frequency Op and the depinning frequency OD. As shown in Fig. 2, a pendulum starts whirling 
once the applied torque O goes beyond a certain threshold S2D. This S'2  D is characterized by the disappearance of 
the equilibrium point determined by (15): 0 = sin - l  ( O / K r )  = 4-½~r. Then I2D ( > 0) is given by S2D = Kr.  On 
the other hand, once a pendulum starts whirling, it continues to rotate even though the torque O is varied down 
below OD. This is due to the inertia of the pendulum and can be understood by the appearance of the second kind 
of periodic solution in a two-dimensional phase portrait of (15) which is well understood (for example, see [ 18]). 

If O is again brought down, the frequency of ,O ~ /0) which is the average of 6 over one period, tends to 0 
continuously as Op is approached. Specifically, if the damping is sufficiently small (underdamped case), (6) tends 
to 0 as [ln(O - Op)] - r ,  which means the falling of the frequency of the running periodic solution 0, becomes 
extremely steep as O tends to Op [28]. Furthermore, in this underdamped case an analytical approximation of Op 
becomes possible, using Melnikov's method [10] (see Appendix B for the derivation of I2p). 



H.-A. Tanaka et al./Physica D 100 (1997) 279-300 285 

/ z ~  S" 

/ \ 
d e p i n n i n g  t h resho ld  

p inn ing  f r e q u e n c y -  ~ p  f r e q u e n c y  : ~ D  

Fig. 2. (/2, (0)) curve for a single oscillator. 

, 1 , f , ,  : 

.., ....................... " case [ l ]  

m ~ l ~ ~ n ~  . . . .  • case [11] 

m : locked oscillators ,, : drifting oscillators 

Fig. 3. Locked oscillators [S] and drifting oscillators [D] distributed on (~2, (#)) curve. 

3.2. Self-consistent equation f o r  two different cases 

We now look for a solution of  (15) satisfying [A 1 ] by deriving a self-consistent equation determining the coherence 

r. There are two cases to be considered: case [I] in which the coupling strength K is increased from the incoherent 

r = 0 state; and the case [II] in which K is decreased from the coherent state with r ~ 1. In both cases, we start by 

assuming the state where there are swarms of  locked and drifting oscillators and they have some coherence qock and 

rdrift, respectively. In case [I], suppose a certain r is given at any moment,  then r determines the pinning threshold 

~2p and the initially drifting oscillators with I2 < ~(2p can be entertained to the locked oscillators [S] after a certain 

transient. Thus, it is reasonable to assume that the swarms of  [S] and the drifting oscillators [D] can be separated 

at I2 --  ~2p in the natural frequency distribution as shown in Fig. 3. On the other hand, in case [II] initially locked 
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oscillators are desynchronized and fall into the drifting state [D] once I2 exceeds I2D(= Kr). Hence, IS] and [D] 
can be assumed to be separated at the depinning frequency S-2 = 12D. 

The coherence rlock for case [II] takes exactly the same form as (11) in Kuramoto's  theory: 

,~/2 

II f ns(O)eiO dO = f g(n)eiO dn = Kr f rlock = 

{ .(~ { < .&"2 D - - 7 r / 2  

COS 2 0 g ( K r  sin 0) dO, (16) 

where ns is the normalized density of  the synchronized oscillators with phase 0. In (16), the relations ns(0) = 

g(12) d I2 /dO and Kr cos 0 = d ~ / d O  were used. For case [1], oscillators with I2 > S2p are still drifting on the 
unit circle and the coherence of the locked oscillators takes the following form: 

r ock = f ns(O)ei° dO = f g(I2)ei°da'2= 
IS21<S2v 

0e 

= Kr f cosZOg(Kr sinO) dO, 

-op 

sin-1 [~2p/(Kr)] 

/ 
- sin-1 [~?p/(Kr)l 

ei°g(Kr sin O)K cos 0 d0 

(17) 

where 0p = sin -1 ~2p/(Kr) and 0p < l r r  follows from 12e < .('2D = Kr. 
Now we consider the effect from [D] on r: 

I'I'ffei°nD(O,n)g(S2)dOdn, rdrif t -~ 

I.Q l >.f2p,o 

( 1 8 )  

where nD(0, $'2) is the density of  the desynchronized oscillators [D] with phase 0 and given by driving frequency 
- 

~2. As nD(O, I2) is proportional to 101 - l  and f riD(O, I2) dO = f :  nD(O, 12)0 d t =  1, we obtain 

riD(O, 12) = 7"-1101-1 = (~/2zr)101 -~. (19) 

I,I1 with T and ~ being the period and the frequency of  the running periodic solution of 0, respectively. Thus, rdrif t are, 

respectively, 

1,,, f f eiO(t,n)(~/2~r)lOl-,Og(12)dtdI2 1 / f eiO(t.n)l~lg(S2)dtd~" rdrift = = 2---~ 
I£2I>£2p,D 0 IF2I>f2p.D 0 

(20) 

Here 0 (t, I2) denotes the running solution of (15) with driving frequency I2, and the following properties were used: 
0 > 0 for a'2 > 0, 0 < 0 for K2 < 0, and ~ ( - 1 2 )  = - ~ ( S 2 ) .  In (20), cos 0 (t) and sin O(t) are periodic in t because 
0 (t + T) =-- 0 (t) + 2re, Yt. Then, the integration of  cos 0 (t) and sin 0 (t) over one period T does not depend on the span 
over which the integration is made. Hence, we may assume that 0(0, a'2) = 0 without loss of  generality. Also from 
(15) and the above initial condition 0(0, I2) = 0, we have m(-O(t, J2)) + (-O(t, £2)) = -a'2 - Kr s i n ( - 0 ( t ,  a'2)) 
such that 

O(t, --a'-2) = --O(t, 0) .  (21) 

From g(I2)  = g ( -~2 ) ,  (20) takes the following form: 
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i" 

I., , f f  rdrift = 2-'-~ [COS0(t, ~ )  + COS0(t, --I-2)]l~lg(a'2) dt d$2 

$'2 > ff2p, D 0 

+ ~ [sin O(t, $-2) + sin O(t, - I 2 ) ]  J~lg($-2) dt dI2 (22) 

a"2 > ~f2p, D 0 

and can be simplified by (21) to 

, , ,  ' f f ,.., 
r d r i f  t = - ~  

.Q > ff2p,D 0 

Thus, the two self-consistent equations for r I'II, 

rI.ll = rl,ll l.II (24) 
lock q- rdrift' 

are obtained from (16), (17) and (23). 

3.3. Perturbation approximation of self-consistent equations 

In this section we consider a condition that enables us to treat (24) analytically. For this purpose, the integration 
in (23) is performed perturbatively. One way to do this without making the inertia term m~J small is to start 

from the underdamped case of (15) with uniform distribution of natural frequency $2. We consider this in detail 

below. 

First, in a new time-scale: told = mtnew, (15) takes the form 

m K Oi +Oi =m,Qi -mKrs inOi ,=m'  (-~,f2i) - m '  ( - ~  )rsinOi. (25) 

This implies that the original (15) with given m is equivalent to a new system with arbitrary m'  and an associated 

rescaled distribution of I2i, together with the rescaled K. For instance, suppose that we have a coherence r for 

(15), with m = 1.0, uniformly distributed $2 E [---QM, $2M] with ,f2M = 5.0 and K = 10.0, then the same r 
will be obtained for m = 0.1, $2M = 50.0 and K = !00.0. Thus we do not have to consider m and I2M(/K) 
separately and we are naturally led to one possible way to introduce a small parameter 8 in the underdamped ( 15): 
8 ~  (Km)  - I  << 1. 

By letting told -+ K-l tnew and r = 87 with ? being an arbitrary constant, (15) can be transformed to 

+ 80 + 827 sin0 = 8£2/K. (26) 

In the underdamped Josephson junction array, the exactly equivalent perturbation equation is used for a single 
junction equation [32]. The running periodic solution in (26) is proved to be unique and globally exponentially 
stable [18]. We look for a series expression of this running periodic solution 0 (t) using the Poincar6-Lindstead 
mehtod as follows. First, by setting 

O(~t) = Oo(f2t) + 801 (~t)  + . . . ,  (27) 

.O = I2o + 8~1 + . . .  (28) 
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with period T = 2 z r / ~  and the initial condition 0(0) = 0, we can obtain the following by matching terms at each 
power of  3: 

O(t) = .0t + A2r sin I2t + A3?(cos ~ t  -- 1) + Aalr  2 sin 2 ~ t  - A47 sin S2t 

+ 3AS?Z(cos  2.0t  -- 1) -- AS(~ + ?2)(cos ~ t  -- 1) + . - .  (29) 

with A _= (mS2) - I  and 7 -- 3 -1 r  = Kmr, and 

= S 2 / K  - I;2 a33 + I ; 3 A 5 3  . . . .  (30) 

In the above, ~(2 n (n > 1) first becomes non-zero at the term 34 term due to the cancellation of  the secular term. 

Using .f2p obtained by the Melnikov method (see Appendix B), the following estimates are obtained, which will 

be used later in this section: 

A = (mI2) - I  _< (m~2p) -1 ---- ¼7rV/~/r (31) 

and 

A27 = Ar(K/f2) < (¼7r) 2 ~ 0.62. (32) 

As we shall see in Sections 3.4 and 4, the coherence r takes a value, _> ¼rr as shown in Section 3.4, above critical 

K. This implies that we do not have to consider small r. Thus, we only consider 8 = (Kin) -1 that satisfies 3 << r 

and A << 1 from (31). From the series solution of  O(t) in (29), it can be verified that the coefficients of  sin/cos 
terms are multiplied by O(327)  as the harmonics increased by one. This multiple A27 is estimated as A2r < (l:rr)2 

even at ~ = I2p as in (32) and this can be much smaller for S2 within S2p < S2 < S2M. Also in (30), the second 
term, --(~/2)A33, can be estimated from (31) and (32) as l r2A33 = I ( I rr'~3rl/2,~l/2 ,~,, + , v << 1, and the multiplication 

by A2~ between the higher-order sin/cos terms is verified as in (29). Thus, in the underdamped (26) with ,4 << 1, 

the lowest-order (harmonic) solution can be considered to be a reasonable approximation to the running periodic 

solution 0 (t). 

Under these conditions, we are now able to derive an analytic approximation or" r I'IIdrift as follows. By discarding 

higher-order terms with A n coefficients (n > 4) in (29), a straightforward calculation (see Appendix A) leads to 

the integration 

f cos 0 dt ~ - 2 ( ~ r / ~  + A3~), J1 (a) cos(C (33) 

0 

in which a = A2~/1 + A 2. ? and C = s in-I  (1/~/-i- + A2). From (31) the oscillation amplitude a can be estimated 

as a = A 2 ~  • ~ < (¼Jr)2~/1 -4- (Tr/4)2(6/r). It should be noted that a becomes much smaller than (¼7r) 2 

for I2 > f2p. Hence, Jl(a) in (33) can be approximated as Jl(a) ~ I a = A 2 ~  • ~/2. Moreover, from 
A < (rn~2p)-J and the above approximation, we have to lowest order 

Jl (a) cos(C -f- A3r) ~'~ l r A 3  (34) 

(see Appendix A.) We use (34) to approximate (23) and finally obtain the following: 

I2M 

1,1I 1 f _2(zr/~)(~/2)A3l.(21g(I2)dJ 2 _ Kr [_  1A2]$2 M 
rdrift = ~- 292M 2~  JY2p,D" (35) 

-~P,D 
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On the other hand, the uniform distribution of the natural frequency g (Y2) on [-S2M, I2M] is independent of S-2 and 
therefore gives 

g($2) = 1/212M for S'2 E [--I2M, 52M], (36) 

which reduces (16) and (17), respectively, to the following forms (37) and (38): 

0v 

r~ock ----- Kr f cos 2 0 g ( K r  sin0)dO = K----f-r (0p + ½ sin20p), 
2£2M 

-0p 
zr/2 

n =Kr f cos2Og(KrsinO)dO= rr Kr 
rl°ck 2 212-----M ' 

- ~ / 2  

(37) 

(38) 

where 0p ~ sin - I  [I2p/(Kr)] and g(Kr sin 0) = 1 /2~M is used. 
. upper For this particular uniform g(I2) case, g($2) has a bounded support [ - I2m,  g2M] and in the cases of K > ~c 

(in increasing K) and K > /(lower (in decreasing K) the contribution from the locked oscillators r m takes the --c lock 
form of Kr fo~,~ c°s 2 0 g ( K r  sin 0) dO with sin -1 [~2M/(Kr)I. 

We note that in Kuramoto's model with uniformly distributed natural frequencies, the rlock term in (11) has the 
same form as (38). Thus, for Kurarnoto's model with uniformly distributed natural frequencies .(2 ~ [-S2M, S2M], 
the self-consistent equation (14) for the synchronization onset can be written in the following form: 

r--r,  ock--rdrift=r(l n" K ) = 0 " 2  2~M (39) 

Summarizing, we have the following sets of self-consistent equations, respectively, for the increasing K case [ 1 ] 
and decreasing K case [II]: 

[I] increasing K case: if I2p < £2M (; K < Kcupper), r = r~ock + rlrift , then from (35) and (37) 

{ K ~ K  [ - IA2]I2M } = 0 ;  (40) 
r 1 - 2S2 , + ½ sin 20p) + 2S M 2 -  

, , .  uppe, ,  ,,., r2.. i f ~ p  > _ I-2M (; K > --c , , r  = rlock ---- Kr - - ~  cos2Og(KrsinO)dO = (Kr/2I-2M)(OM+~sin2OM)andfrom 
(37) 

r 1 - (Op + ½ sin 201, ----- O, (41)  
2~2M 

where O~ = sin - I  [~ / (Kr ) ] .  
r l I  ~ /(lower] = rH + drift' anta Irom (35) and (38) [I1] decreasing K case: if $2D < $2M (; K < --c ., r lock 

{ rr K K 12~12M } 
- - +  [ - 7  `4 Jot, =0; (42) r 1 2 2£2M 

_ l ( l o w e r ~  M leading to the same form as (41), if I2D > I2M (; K > --c ,, r = flock, 

{ K (OM+½sin2OM)}=O. (43)  r 1 -- 2----~-~M 
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3.4. Discontinuous phase transition at the critical point (Kc, rc) 

In (40) and (42), r = 0 is just a formal solution since we assumed r >> ~ > 0 in Section 3.3. However, directly 

from (8) and (15) the incoherent state 

r(t)  ~ 0 Vt, VK (44) 

is verified to be a possible (static) state be setting 0 i as follows. For any ~ ,  6 [--~2M, 12M], assume n (> 2) 

oscillators have this natural frequency and their initial state Oi (t = 0) satisfy ~ Oi (0) = 0, where the summation is 

taken over the n oscillators with S-2 = ~ . .  This particular configuration of  Oi leads to r(t)  =- 0 and ~b = constant 

in t for any N. Of course, this situation is too restricted to model nearly incoherent states with certain (small) 

fluctuations around the above-mentioned completely incoherent state observed in numerical simulations and only 

shows the existence of  the static r --- 0 solution in the limit of  large N. (For a more general configuration, see the 

discussion in [25].) 

On the other hand, for certain large K the coherence r can be determined by (41) or (43). This (K, r) curve can 

exist for K such that S2p > ~M in case [I] and for 12D > S2M in case [II], respectively, as shown in Fig. l(a). The 

end points of  this curve correspond to I2p = 12M for case [I] and 12D = S2M for case [II]. Since r is shown to be 

an increasing function of  K (see Appendix C) and I2p and ~2D are, respectively, given by I2p = ¼zrq~-g-P/m and 
. . .  upper 

~2D = Kr ,  ~2p and I2D are increasing functions of  K. Hence, we can determine these end points ttCc , r upper) 
for [I] and (g~ °wer, r~ °wer) for [II] as follows. 

For [II] 

+A / ~ ~ / t,- upper ~ upper / -- 
~"~M = ~('2p = V-r/+~ jW,,  c "c /,,~ (end point of(K, r) curve), 

.. upper 
1 -- t C c  [@ + ½ sin2@], (from (41)) 

212M 

(45) 

(46) 

and 

K u p p e r  upper 
c rc sin Op = X?M (from the definition of  Op). (47) 

For [II] 

.~  l o w e r  l o w e r  
~(2M = "~D = /k c rc (end point of(K, r) curve), 

R "lower 
1 -- -=c (from (43)) 

2 2~M 

such that 

(48) 

(49) 

Klower ----_ 412M/Zr, lower l g .  (50) 
C r c  

It should be noted that the above solutions (Kupper, rcUpper') and (K cl°wer, rl°wer)c lie on the same (K, r) curve defined by 

the self-consistent equation r = Hock. From (46) and (49), Kg pper > K~ °wet follows because 0r,+ ½ sin 2@ < ½zr for 

0 < 0p < ½zr. Since the (K, r) curve is given by a continuous monotonic increasing function r ( K )  for K > --c](l°wer 
upper lower = ¼zr follows. as shown in Appendix C, rc > r c 

We now consider the solution of  the self-consistent equations if K is below K l°wer for [II] and/c'upper for [I]. We - - C  sLC 

first assume non-zero r > 0 exists and show that this cannot be possible; the only possibility is r = 0. Given any 
r > 0, the terms (K/212M)[. • -] from drifting oscillators in (40) and (42) have some non-zero value and this implies 
that r is no longer on the coherent (K, r) curve for K < ](lower (/gupper). From A << 1 and (32), higher-order 

- - C  
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terms in the (K/2~a4)[ .  -.] term in (40) and (42) are negligibly small and the lowest-order term is dominant. This 

lowest-order term ( K / 2 ~ M ) [ - - ½ A  2] is clearly always positive, For case [II], the 1 - ½7r(K/2~M) term in (42) is 

also positive because K < .i cK l°wer = 4[2M/Tr. Also for [I], the 1 - (K/2~2M)(Oe + ½ sin 20p) term in (40) is shown 
. upper to be positive for K < t~c from a straightforward calculation (see Appendix C). Thus, both for [I] and [II], the 

{. • .} terms in (40) and (42) are always positive, proving non-existence of  any non-zero (static) coherence r > 0 for 
. upper K l o w e r  K < t% a n d K  <__c • 

The above reasoning also applies to Kuramoto's model with uniformly distributed natural frequencies, whose 

self-consistent equation for the synchronization onset is given by (39). 

4. Numerical simulations 

As we see in (25), in Section 3.3, we do not have to consider m and a2M ( /K)  separately. Thus, for numerical 

simulation purpose we fix the distribution of  Y2 as g2M = 5.0 and gradually change m in a region of  large mK. 

4.1. Numerical scheme 

The numerical simulations of (5) were performed using a fourth-order Runge-Kutta integration scheme with a 

timestep 0.2. Several of the results were checked with a timestep 0.05. The number of  oscillators usually used was 

500. In the numerical simulations, we choose N evenly spaced natural frequencies Y2i on the interval [ - -~M,  ~M] 

such that ~2i = --~2M + 2(i -- 1)~M/(N -- 1). Two different types of  initial conditions are considered: (a) Oi = 0 
and O) i = 0, and (b) Oi uniformly distributed in [0, 27t) and wi also uniformly distributed with wi = ~i .  

To obtain the (K, r) characteristics, we employed two different schemes (i) and (ii): (i) starting from (b), K is 

varied up until all oscillators are coherently locked and r becomes r ~_ l, and then K is varied down without feeding 

new initial condition for Oi and wi from outside; and (ii) in increasing/decreasing K, the initial conditions are given 

as in (b)/(a), respectively for each update of K. The results are compared for several choices of m and a"2M, and 

it is verified that the (K, r) characteristics obtained from (i) and (ii) do not show significant differences except for 

small fluctuations near the critical K of  the coherence onset. Most of  the numerical results presented in this section 

were obtained by scheme (i). 

4.2. Critical points and discontinuous jumps 

Fig. 4 shows a typical example of the hysteretic synchrony observed numerically. These data were obtained using 

the scheme (i) for N = 500 and m = 0.85. As we showed theoretically in Section 3, the discontinuous jumps 

were observed at two different critical points of (K, r). From the enlargement of  Fig. 4, these critical points are: 

(K, r) ~ (6.37, 0.785) and (K, r) "" (13.77, 0.966). The theoretical values from (45)-(47) and (50) lead to the 

corresponding points: (K, r) ~ (6.366, 0.785) and (K, r) _~ (13.44, 0.975). 

A non-stational oscillation of r was observed when we chose m larger than m ~ 0.90. For such m-values and 

in a range of K the oscillators have a partially coherent, oscillating state from the initial (nearly) incoherent state. 

As shown in Fig. 5, this oscillating state onsets at a certain K and exists below the critical K above which all the 

oscillators coherently synchronize. Careful examination of the data from the enlargement of Figs. 5(a)-(c) leads to 

the numerically obtained upper critical points: 

for m = 0.90, (K, r) ~ (14.61,0.979), 

form =0 .95 ,  (K,r )  ~ (15.32, 0.981), 

for m = 1.0, (K, r) --~ (15.92, 0.982). 



292 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

.9 

.8 

.7 - 

.6 - 

• 5 - 

.4 - 

• 3 - 

.2 - 

.! - 

0 
6 

H.-A. Tanaka et al./Physica D 100 (1997) 279-300 

8 I0 12 
K 

14 16 

Fig. 4. Typical example  o f  the hysteret ic synchrony;  m = 0.85, N = 500 and .-QM = 5.0. 

0 

0 

0 

0 

0 

0 

0 

l 

9 

8 

7 

6 

5 

4 

.3 

T I T 

02? 

I0 ll 12 13 14 15 16 
(a) K 

Fig. 5. Incoherent  state, oscil lat ing r state, and coherent  locked state, observed with increasing coupl ing s trength K:  (a) m = 0.90; (b) 
m = 0.95; (c) m = 1.00. 

0 



(b) 

1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.I 

0 

10 

H.-A. Tanaka et al./Physica D 100 (1997) 279-300 

I "T T "f ~ 

ii 12 13 

K 

14 15 16 

293 

ic) 

1 

0.9 - 

0.8 - 

0.7 - 

0.6 - 

0.5 - 

0.4 - 

0.3 - 

0.2 - 

0.i 

0 
12 13 

! I I I I 

14 15 16 17 18 
K 

Fig. 5. Continued. 

19 



294 H.-A. Tanaka et al. IPhysica D 100 (1997) 279-300 

1 

0 . 8  

0 . 6  

0 . 4  

0 . 2  

I 

,' ! , ¢ , 

" ,'I ',I 

,'/' "k. /If,,' , 

I I 

I I 

0 ' I I I I 

60 62 64 66 68 70 
t 

Fig. 6. Wave forms of  osc i l la t ing  r for rn = 0.95; K = 12.0 (sol id curve),  K = 13.0 (dashed curve), and K = 14.0 (dotted curve). 

Solving (45)-(47) leads to the theoretical values of  the upper critical points: 

for m = 0.90, (K, r )  ~ (14.19, 0.978), 

for m = 0.95, (K,  r )  "~ (14.95, 0.980), 

for m = 1.0, (K,  r )  --~ (15.70, 0.982). 

These results, along with the above data for m = 0.85, show reasonable agreement between the simulations and, the 

theoretical predictions, and the agreement improves as m becomes larger. Thus, we have verified the existence of  
• upper upper, 

the upper critical pomt (Kc , rc ) as obtained from the stationarity assumption [A 1] for the coherence r. The 

oscillating r state, however, clearly breaks the assumption [A1] and therefore cannot be explained from the theory 

in Section 3. 

4.3. Oscillation of r 

We now focus our attention on the oscillating state• Wave forms of  r are shown in Fig. 6 for m = 0.95, 

N = 500, for three values of  K,  which seem to be periodic. As we see in Figs. 5(a)-(c),  the range of  K showing 

an oscillation of  r increases as m is increased. More specifically, the oscillating region of K is defined by the 

region of  K values for which there is a spontaneous transition from an incoherent state to an oscillating state (upper 

critical K upper) - (oscillation onset Kosc). In Fig. 7, we compare the oscillation onsets for different system size 

N = 300, 500, and 700 using the scheme (i). The result shows the onset Kosc is increased as N becomes larger 
upper 

and Kosc seems to tend to Kc . However, this does not necessarily imply an oscillating state cannot exist, as N 

gets large, for specific initial conditions• To see if such an oscillation of  r can be a possible state for large N, we 

numerically explore (5) for various N up to 2500, using the following initial conditions: (c) Oi and wi are given as 

in (b) for I~oi(0)] = ]I2i1 > 0.1, otherwise Oi(O) = 0 and O ) i ( 0  ) --- ~f2 i .  As shown in Fig. 8, the amplitude of the 
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oscillation of r does not decrease as N is increased to 2500. This result, along with the result in Fig. 7, seems to 
support the following conjecture: an oscillating state can be a possible state in the large N limit for a range of m 

and K,for certain initial conditions. The transition from the incoherent state to this oscillating state can be triggered 
by fluctuations in the (nearly) incoherent state, which increase with decreasing N. 

5. Conclusion and discussion 

In this paper, we studied the collective dynamics of coupled, many oscillator systems with hysteretic character- 
istics. To facilitate the analysis, we made two assumptions familiar from statistical mechanics: that the coupling 

between oscillators is global and that the system is infinitely large. These assumptions made it possible to determine 

the onset of collective synchrony in a self-consistent manner, which can be considered as a higher-order extension 

of Kuramoto's theory. We have shown that, both for the extended Kuramoto's equation (5), as well as Kuramoto's 
equation with uniformly distributed natural frequencies, infinitely many oscillators exhibit a discontinuous first- 

order phase-transition-like change between the incoherent state and the coherent synchronized state. We have also 
shown that, depending on initial conditions, this transition takes place at different critical values/(lower and/(upper 

upper • / ( lower  The K~ °wer value is the same as Kuramoto's, while the Kc value is larger than --c • Our numerical simulations 

show that an oscillatory r state can exist and bifurcate at K - - -  gc l°wer from the coherent state for non-small m. 

Discontinuous jumps have also been found and examined analytically in a CDW model with a global coupling 

structure [29] and also numerically observed even in randomly coupled neural elements [26]. A common feature 
of these systems is the existence of a uniformly distributed random variable in a finite interval, e.g. the random 

pinning in [29] and the uniformly random natural frequencies in [26]. The question naturally arises if the uniform 

distribution of the random variable is the cause of the discontinuous jumps. Comparison of a uniform distribution 
with a non-uniform distribution of the natural frequencies in (5) is in progress. 

Daido examined the first-order system (1) with matched, general periodic function nij (-) ~ h ( ' )  and a Lorentzian 
distribution g(I2). He showed that hysteresis and bistability occurs in the "inverted bifurcation" for certain non- 

sinusoidal functions [6]. He called this phenomenon coupling induced hysteresis and bistability. Even for the 
Kuramoto model with symmetric and double-peaked distribution g(Y2), such hysteresis appears [2]. Compared to 
Daido's work [6], this might be called frequency distribution induced hysteresis. While, the hysteresis in the extended 

Kuramoto model reflects the hysteretic response in each oscillator and therefore might be called adaptation induced 

or inertia inducedhysteresis, although we only considered a non-generic uniformly distributed frequency distribution 

in this article. 
There are also several mathematical and experimetal open problem as follows. 

(1) Although we have verified the oscillating state of r up to N = 2500, it is not yet clear how this state can be 
characterized in the large N limit. Also, if such a state is possible in the large N limit, how can the stability of 
this state be related to m? 

(2) We have shown that for a range of K the coherent locked state and the incoherent state can coexist. However, 
we have not proved these are stable. Also, we have not proved whether the incoherent state is destabilized above 
K > g upper or not. 

(3) In the synchronous firing of a swarm of the fireflies, the strength of mutual entrainment K can be interpreted 
as a ratio of the firing brightness to the background brightness. Thus, K should be varied up/down as it gets 
dark/light in the laboratory experiment. It would be very interesting to observe if a swarm of P malaccae 

exhibits a hysteresis in its synchrony as it gets drak/light. 
(4) Recent studies on Josephson junction arrays revealed that their synchrony can be hysteretic depending on 

initial condition when the second-order time derivative (/3tp) is not negligibly small in the governing equation. 
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Wiesenfeld pointed out that such a hysteretic synchrony may be related to the hysteresis found in the present 
study. Can we explain the hysteresis in Josephson junction arrays in such a self-consistent theory? Work in this 
direction is in progress. 
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Appendix A. Approximation of the cos 0 term 

This appendix gives a calculation for the cos 0 term needed in Section 3.4. We employed the approximation of 
0: 0(r)  : 00 + ~202 + ~303, discarding ~n(n > 4) terms. This yields a good approximation of cos0(r )  because 
~4(K / f  2)4~2 = (A4~)2 becomes small compared to the coefficients in the lower-order terms. Then, cos 0 (~) can 
be expressed by the Bessel functions as follows: 

cos0(r)  ~ c os [ r  + A2~ sin r + A3~cosr -- A3~] = cos ie r  + a  s in(~t  + C + A3~)] 

-= Jo(a) cos ~ t  - Jj (a) cos(C + A37) + J1 (a) cos(2~t  + C + A3~), 

+ (higher harmonics) (A. l) 

leading to 

f cos (t) = J l (a)cos(C + (A.2) 0 dt A3~), 

0 

where A = (mY2) -I  , and a and C are determined from 

a sin(r + C) = `62f sin r + A37 cos r, 

a = A e ~ l + A e f ,  s i n C = l / ~ / l + , 6 2  , c o s C = , 6 / ~ / l + A  e. (A.3) 

If ,6 << 1, (A.2) can be further approximated as follows. In Section 3.3, we obtained J1 (a) ----- ½a = ~Aex/1 + ,62. 
?/2. Using this approximation and (A.3), the Jl (a) cos(C + A37) term in (33) can be given as 

Jl (a)cos(C + A37) ~ ½f,62 /~-_}_ A2[COS(`637)(`6/~/1 q._ A2) _ sin(`637)(1/~/1 + A2)]  

= ½~[`63 Cos(A3~)  _ `62 sin(,62f)] (A.4) 



298 H.-A. Tanaka et al./Physica D 100 (1997) 279-300 

As ,4 < (mI2p) - l  = (4/Tr)vC~-/r) << 1 (see Appendix B) and ,43? : ,42?. ,4 << 1, COS(,437) ~ 1 - ½ (,43?)2 + 
O([A37] 4) and sin(A3?) "- "43? + 0(['43?]3) follow. Neglecting 0([.43?] 4) terms in the cos term and 0(['43?] 3) 
terms in the sin term, we finally obtain the following from (A.4): 

JI ( a ) cos (C  + ,43?) _ ½?[A 3 -- ?Zl 5 -- 172"49]. (A.5) 

Appendix B. Analytic expression of S2p 

This appendix gives an analytic expression of ~2p needed in Section 3.4. A new time-scale tnew = (~/-(-KT/m)told 
transforms (15) to the following form: 

+ (1/mx/-m--K~r). 0 -4- sin0 = 12/ (Kr) .  (B.1) 

Using 1/v/-m-K-7 = 6(~/-~/r) and ~2/ (Kr)  = ~(12m/r) ,  (B.1) becomes 

~ /=  - sin0 + 6(mF2 / r  - (v/-~r /r)O) = - sin0 + 3(1 - otO). (B.2) 

Eq. (B.2) has a suitable form for Melnikov's  analysis, i f8  << 1, I =_ J2m/r  = O(1) and ct - v~r/r = O(1). The 

homoclinic bifurcation curve in the (I ,  or) parameter space is tangent to the line I = 4ot/rr and this line is close to 

the homoclinic bifurcation curve even if 3a is not so small (see [10,28]). Thus, we obtain the approximation of S2p 
from I = 4ot/zr, i.e. ml2p / r  = (4/zr)v/-~/r. The result is given as 

4 K ~  (B.3) 

Appendix C. K, r curve defined by r ~D flock 

/(lower which is defined by (41) or (43). This appendix gives an analytic expression for the (K, r)  curve for K > --c , 
We prove here K = K (r) is a continuous monotonic increasing function of r. Eliminating K from (43) and setting 
sin Or, = ~2M/(Kr) ,  we obtain 

0p + (1/2) sin 20p 
r(0p) = (C.1) 

2 sin Or, 

Then, r ' (0p) becomes 

cos 0p (1 sin 20p - Or,), (C.2) 
r~(0P) - 2 sin 2 0p 

which is always negative for 0 < 0p < ½zr. Hence, r(0p) is a monotone decreasing function of 0p. Also, (43) 
shows that K(0p) is a monotone decreasing function of 0p. Thus, r ( K )  is a monotone increasing function of K. The 
continuity of  r ( K )  is clear from (43) and sin 0r, = J2M/(Kr) .  

We show below that the 1 - (K/212M)(Op + ½ sin 20p) term in (40) is positive. By letting K(0r, + ½ sin 20p) = 

f ( K ) ,  

df(K)dK = (0p + ½ sin 20r,) + K ( I  + cos 20p) d0Pd____K_ (C.3) 

follows. From sin Or, = $2p/(Kr)  = (4 /Jr ) (mrK)  -1/2, the following relations are obtained: 

! sin 20p = (4 /zr)2(mrK)-U2[(¼zr)  2 - ( m r K ) - l ]  -U2, cos 20p = 1 - 2(4/yr )2 (mr K)  -1, 2 
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and 

d0p = l ( m r ) _ l / 2 K _ 2 / 3 [ ( 1 ~ ) 2  _ (mrK)_ ,] - l /2 .  
d K  

Using these in (C.3) ,d f (K) /dKcanbes impl i f i ed tod f (K) /dK = 0p > 0. As 1--(K/212M)(Op+ 1 sin 20p) = 0 
= /(lower follows. for K --cgl°wer and d f ( K ) / d K  > 0, 1 - (K/212M)(Op + 1 sin 20p) > 0 for  K < --c 
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